Ecological niche variation drives morphological differentiation in tropical stream-dwelling newts from Indochina
Corresponding Author
D. V. Tran
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
Vietnam National University of Forestry, Ha Noi, Vietnam
Correspondence
Dung Van Tran, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan.
Email: [email protected]
Search for more papers by this authorD. V. Phan
Vietnam National University of Forestry, Ha Noi, Vietnam
Search for more papers by this authorK. A. Lau
Vietnam National University of Forestry, Ha Noi, Vietnam
Search for more papers by this authorK. Nishikawa
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
Search for more papers by this authorCorresponding Author
D. V. Tran
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
Vietnam National University of Forestry, Ha Noi, Vietnam
Correspondence
Dung Van Tran, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan.
Email: [email protected]
Search for more papers by this authorD. V. Phan
Vietnam National University of Forestry, Ha Noi, Vietnam
Search for more papers by this authorK. A. Lau
Vietnam National University of Forestry, Ha Noi, Vietnam
Search for more papers by this authorK. Nishikawa
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
Search for more papers by this authorEditor: Anthony Herrel
Associate Editor: Anne-Claire Fabre
Abstract
Morphological diversity within organisms can arise from factors other than genetic diversity alone. Local adaptations and combinations of various factors are also involved in shaping morphology. We investigated the relationship between morphological diversity and ecological niche divergence within two related tropical stream-dwelling newt species from Indochina: Paramesotriton deloustali and P. guangxiensis. We identified sexual dimorphism within both species and a significantly larger body size in P. deloustali than in P. guangxiensis. Our findings highlighted that climatic variables strongly influence Asian warty newt distribution, indicating the potential effects of climate change on tropical newt populations. Furthermore, we identified significant intra- and interspecific morphological and niche differentiation across five populations of the two newt species, suggesting that newt morphology is responsive to environmental factors. A significant negative relationship was observed only between ecological niche similarity and geographic distance among various combinations of factors, indicating that the distinct morphology of the study species mirrors ecological adaptation.
Conflict of interest
The authors have no competing interests to declare.
Open Research
Data availability statement
Data on specific locations (longitude/latitude) of newts cannot be shared publicly because of the need to prevent illegal hunting. The data could be made available to editors or reviewers for checking if necessary. For other purposes, this data are available from the corresponding author (contact via email: [email protected]) or Kanto Nishikawa, Graduate School of Human and Environmental Studies, Kyoto University (email: [email protected]) for researchers who meet the criteria for access to confidential data.
Supporting Information
Filename | Description |
---|---|
jzo13169-sup-0001-FigureS1-S8.docxWord 2007 document , 3.9 MB |
Figure S1. Map of northern Vietnam and south China, showing the occurrence locations (green circles) of five groups of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis): West (W), East (E), Cao Bang (CB), Quang Ninh (QN), and Guangxi (GX). Figure S2. Sexual dimorphism of Paramesotriton deloustali (n = 71 males and n = 83 females) and P. guangxiensis (n = 54 males and n = 43 females). The selected dimorphic characters were presented: Snout-vent length (SVL), Vent length (VL), tail length (TAL). Figure S3. The boxplot for morphological characteristics between female and male of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). Figure S4. The boxplot for morphological characteristics between two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). (A) Female, (B) Male. Figure S5. The boxplot for morphological characteristics between compared geographic groups of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis) (unit: %). West and East groups: P. deloustali; CB, QN, and GX: P. guangxiensis. Figure S6. The value of Cohen's kappa (KAPPA), ROC curve (AUC), and True skill statistic (TSS) of the five selected models Generalized Boosted Models (GBM), Random Forest (RF), Multivariate Adaptive Regression splines (MARS); Flexible Discriminant Analysis (FDA), and Maximum Entropy (MaxEnt) models projecting potential distribution for groups of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). Figure S7. The contribution of environmental variables in the five selected models Generalized Boosted Models (GBM), Random Forest (RF), Multivariate Adaptive Regression splines (MARS); Flexible Discriminant Analysis (FDA), and Maximum Entropy (MaxEnt) models projecting potential distribution for groups of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). Figure S8. Niche of the groups of the two Asian warty newts (Paramesotriton deloustali and P. guangxiensis) in ecological niches comparison pairs from a principal component analysis (PCA-env). Panels (A1 – J1) represent the niche of compared pairs, green and purple colors show the density of the occurrences of group A and B in each pair, respectively. Orange color shows the niche overlap between compared groups. The solid and dashed contour lines represent 100%, and 50% of the available (background) environment of compared group, respectively. The histograms (A2 – J2; A3 – J3) show the observed niche overlap (D) between the two groups (red line with a diamond) and simulated niche overlaps (gray bars) in niche similarity tests. The significance of the test, P-value <0.05. |
jzo13169-sup-0002-TableS1-S7.docxWord 2007 document , 45.2 KB |
Table S1. Population number (Pop), species and sample size of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis) used for morphological analyses. Table S2. Means ± sd of SVL (in mm), medians of ratios (R) of a metric character (% SVL) of five groups of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis), F: Female, M: Male. Table S3. The comparison statistics of morphological characteristics between females and males of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). Table S4. The comparison statistics of morphological characteristics between two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). Table S5.. The comparison statistics of morphological characteristics among groups of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). Table S6. Confusion matrix determined in the linear discriminant analysis for groups of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). Table S7. The Mahalanobis distance, Niche Overlap D, Geographic distance and Genetic distance among comparison pair of two Asian warty newts (Paramesotriton deloustali and P. guangxiensis). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545.
- Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232.
- Altunışık, A. (2023). Variation in size and shape: Sexual dimorphism in the southern banded newt, Ommatotriton vittatus (Caudata: Salamandridae). Biologia (Bratisl.), 78, 1–6.
- Álvarez, A., Perez, S. I., & Verzi, D. H. (2013). Ecological and phylogenetic dimensions of cranial shape diversification in south American caviomorph rodents (Rodentia: Hystricomorpha). Biological Journal of the Linnean Society, 110, 898–913.
- Amat, F. (2019). Patterns and allometries of sexual size dimorphism in salamanders and the rejection of Rensch's rule. Salamandra, 55, 145–150.
- Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5, 1–15.
- Antunes, B., Velo-Antón, G., Buckley, D., Pereira, R., & Martínez-Solano, I. (2021). Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies. Heredity, 126, 776–789.
- Arntzen, J., & Wallis, G. P. (1999). Geographic variation and taxonomy of crested newts (Triturus cristatus superspecies): Morphological and mitochondrial DNA data. Contributions to Zoology, 68, 181–203.
- Bayliss, S. L., Papeş, M., Schweitzer, J. A., & Bailey, J. K. (2022). Aggregate population-level models informed by genetics predict more suitable habitat than traditional species-level model across the range of a widespread riparian tree. PLoS One, 17, e0274892.
- Bendik, N. F., Meik, J. M., Gluesenkamp, A. G., Roelke, C. E., & Chippindale, P. T. (2013). Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders. BMC Evolutionary Biology, 13, 1–18.
- Bett, N. N., Blair, M. E., & Sterling, E. J. (2012). Ecological niche conservatism in doucs (genus Pygathrix). International Journal of Primatology, 33, 972–988.
- Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M., Randin, C., & Zimmermann, N. E. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497.
- Buckley, L. B., & Jetz, W. (2007). Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B: Biological Sciences, 274, 1167–1173.
- Colombelli-Négrel, D. (2016). Both natural selection and isolation by distance explain phenotypic divergence in bill size and body mass between south Australian little penguin colonies. Ecology and Evolution, 6, 7965–7975.
- Conover, D. O., Clarke, L. M., Munch, S. B., & Wagner, G. N. (2006). Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. Journal of Fish Biology, 69, 21–47. https://doi.org/10.1111/j.1095-8649.2006.01274.x
- DeMarche, M. L., Doak, D. F., & Morris, W. F. (2019). Incorporating local adaptation into forecasts of species' distribution and abundance under climate change. Global Change Biology, 25, 775–793.
- DeWoody, J., Trewin, H., & Taylor, G. (2015). Genetic and morphological differentiation in Populus nigra L.: Isolation by colonization or isolation by adaptation? Molecular Ecology, 24, 2641–2655.
- Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., d'Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., & Dubuis, A. (2017). Ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774–787.
- Duan, R.Y., Kong, X.Q., Huang, M.Y., Varela, S., & Ji, X. (2016). The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. PeerJ, 4, e2185.
- Edgington, H. A., & Taylor, D. R. (2019). Ecological contributions to body shape evolution in salamanders of the genus Eurycea (Plethodontidae). PLoS One, 14, e0216754.
- Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
- Freudiger, A., Josi, D., Thünken, T., Herder, F., Flury, J. M., Marques, D. A., Taborsky, M., & Frommen, J. G. (2021). Ecological variation drives morphological differentiation in a highly social vertebrate. Functional Ecology, 35, 2266–2281.
- Frost, D. R. (2023). Amphibian species of the world: An online reference. Version 6.2. Httpresearch Amnh Orgvzherpetologyamphibia.
- GBIF. (2023). GBIF occurrence download. https://doi.org/10.15468/dl.u3p6br
10.15468/dl.u3p6br Google Scholar
- Gibbon, J. W., & Lovich, J. E. (1990). Sexual dimorphism in turtles with emphasis on the slider turtle (Trachemys scripta). Herpetological Monographs, 4, 1–29.
10.2307/1466966 Google Scholar
- Goudarzi, F., Hemami, M. R., Rancilhac, L., Malekian, M., Fakheran, S., Elmer, K. R., & Steinfartz, S. (2019). Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser's spotted newt (Neurergus kaiseri). Scientific Reports, 9, 6239.
- Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009.
- Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: With applications in R. Cambridge University Press.
10.1017/9781139028271 Google Scholar
- Hammer, Ø., & Harper, D. A. (2006). Paleontological data analysis. John Wiley & Sons.
- Hu, J., Broennimann, O., Guisan, A., Wang, B., Huang, Y., & Jiang, J. (2016). Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan plateau. Scientific Reports, 6, 32624.
- Hu, J., & Jiang, J. (2018). Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs. BMC Ecology, 18, 1–11.
- Hu, J., & Jiang, Z. (2012). Detecting the potential sympatric range and niche divergence between Asian endemic ungulates of Procapra. Naturwissenschaften, 99, 553–565.
- Huang, Z., Tang, Z., & Tang, Z. (1983). A new species of the genus Trituroides from Guangxi, China. Acta Hydrobiologica Sinica, 2, 37–39.
- Huang, Z. S., Yu, F. L., Gong, H. S., Song, Y. L., Zeng, Z. G., & Zhang, Q. (2017). Phylogeographical structure and demographic expansion in the endemic alpine stream salamander (Hynobiidae: Batrachuperus) of the Qinling Mountains. Scientific Reports, 7, 1871.
- Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225–1241.
- Kühnel, S., Reinhard, S., & Kupfer, A. (2010). Evolutionary reproductive morphology of amphibians: An overview. Bonn Zoological Bulletin, 57, 119–126.
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
- Lau, A., Karraker, N. E., Martelli, P., & Dudgeon, D. (2017). Delineation of core terrestrial habitat for conservation of a tropical salamander: The Hong Kong newt (Paramesotriton hongkongensis). Biological Conservation, 209, 76–82.
- Li, X., Yu, L., Sohl, T., Clinton, N., Li, W., Zhu, Z., Liu, X., & Gong, P. (2016). A cellular automata downscaling based 1 km global land use datasets (2010–2100). Scientific Bulletin, 61, 1651–1661.
- Luo, T., Yan, S. S., Xiao, N., Zhou, J. J., Wang, X. L., Chen, W. C., Deng, H. Q., Zhang, B. W., & Zhou, J. (2022). Phylogenetic analysis of combined mitochondrial genome and 32 nuclear genes provides key insights into molecular systematics and historical biogeography of Asian warty newts of the genus Paramesotriton (Caudata: Salamandridae). Zoological Research, 43, 787–804.
- Luo, Z., Wang, X., Yang, S., Cheng, X., Liu, Y., & Hu, J. (2021). Combining the responses of habitat suitability and connectivity to climate change for an east Asian endemic frog. Frontiers in Zoology, 18, 1–14.
- Lynch, J. F. (1981). Patterns of ontogenetic and geographic variation in the black salamander Aneides flavipunctatus. Smithsonian Contributions to Zoology., 324, 1–53.
10.5479/si.00810282.324 Google Scholar
- Malmgren, J. C., & Thollesson, M. (1999). Sexual size and shape dimorphism in two species of newts, Triturus cristatus and T. Vulgaris (Caudata: Salamandridae). Journal of Zoology, 249, 127–136.
- Mammola, S., Arnedo, M. A., Fišer, C., Cardoso, P., Dejanaz, A. J., & Isaia, M. (2020). Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Functional Ecology, 34, 1064–1077.
- Matsui, M., Misawa, Y., & Nishikawa, K. (2009). Morphological variation in a Japanese salamander, Hynobius kimurae (Amphibia, Caudata). Zoological Science, 26, 87–95.
- Matsui, M., Nishikawa, K., Utsunomiya, T., & Tanabe, S. (2006). Geographic allozyme variation in the Japanese clouded salamander, Hynobius nebulosus (Amphibia: Urodela). Biological Journal of the Linnean Society, 89, 311–330.
- Mayr, E. (1970). Populations, species, and evolution: An abridgment of animal species and evolution. Harvard University Press.
- Ngo, H. N., Nguyen, H. Q., Phan, T. Q., Nguyen, T. Q., Gewiss, L. R., Rödder, D., & Ziegler, T. (2022). Modeling the environmental refugia of the endangered Lichtenfelder's Tiger gecko (Goniurosaurus lichtenfelderi) towards implementation of transboundary conservation. Frontiers of Biogeography, 14, e51167.
10.21425/F5FBG51167 Google Scholar
- Nguyen, T. T. (2015). Study on distribution, status and some ecological characteristics of Vietnam warty newt (Paramesotriton deloustali Bourret,1934) in Tay Thien Area, Tam Dao National Park. Vietnam National University of Forestry, Ha Noi, Vietnam.
- Nielsen, E. S., Henriques, R., Beger, M., & von der Heyden, S. (2021). Distinct interspecific and intraspecific vulnerability of coastal species to global change. Global Change Biology, 27, 3415–3431.
- Nishikawa, K., & Matsui, M. (2014). Three new species of the salamander genus Hynobius (Amphibia, Urodela, Hynobiidae) from Kyushu, Japan. Zootaxa, 3852, 203–226.
- Nishikawa, K., Matsui, M., Tanabe, S., & Sato, S. (2007). Morphological and allozymic variation in Hynobius boulengeri and H. Stejnegeri (Amphibia: Urodela: Hynobiidae). Zoological Science, 24, 752–766.
- Niwa, K., Van Tran, D., & Nishikawa, K. (2022). Differentiated historical demography and ecological niche forming present distribution and genetic structure in coexisting two salamanders (Amphibia, Urodela, Hynobiidae) in a small Island, Japan. PeerJ, 10, e13202.
- Ozaki, K., Tominaga, A., Matsui, M., Hara, S., & Nishikawa, K. (2023). Geographic variation in skull morphology of the Japanese crocodile newt, Echinotriton andersoni (Amphibia: Urodela: Salamandridae), inferred from geometric Morphometrics. Current Herpetology, 42, 9–16.
- Peñalver-Alcázar, M., Jiménez-Valverde, A., & Aragón, P. (2021). Niche differentiation between deeply divergent phylogenetic lineages of an endemic newt: Implications for species distribution models. Zoology, 144, 125852.
- Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions (MPB-49). Princeton University Press.
10.23943/princeton/9780691136868.001.0001 Google Scholar
- Pham, A. V., Nguyen, T. Q., Sung, N. B., Le, M. D., Vaxong, T., & Ziegler, T. (2022). New records of amphibians from son La Province, Vietnam. Herpetology Notes, 15, 169–178.
- R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Rastegar-Pouyani, N., Sharifi, M., & Assadian, S. (2005). Analysis of geographic variation within populations of Neurergus microspilotus and between N. Kaiseri and N. Microspilotus (Caudata: Salamandridae). Russian Journal of Herpetology, 12, 127–134.
- Reinhard, S., Renner, S., & Kupfer, A. (2015). Sexual dimorphism and age of Mediterranean salamanders. Zoology, 118, 19–26.
- Relethford, J. H. (2004). Global patterns of isolation by distance based on genetic and morphological data. Human Biology, 76, 499–513.
- Romer, J. (1951). Observations on the habits and life-history of the Chinese newt, Cynops chinensis Gray. Copeia, 1951, 213–219.
10.2307/1439100 Google Scholar
- Salvidio, S., & Bruce, R. C. (2006). Sexual dimorphism in two species of European plethodontid salamanders, genus Speleomantes. Herpetological Journal, 16, 9–14.
- Schoener, T. W. (1968). The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49, 704–726.
- Seixas, F. A., Boursot, P., & Melo-Ferreira, J. (2018). The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biology, 19, 1–20.
- Sever, D. (2003). Courtship and mating glands. In D. M. Sever (Ed.), Reproductive biology and phylogeny of Urodela. Science Publishers, Inc.
- Shine, R. (1979). Sexual selection and sexual dimorphism in the Amphibia. Copeia, 1979, 297–306.
- Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H., & Warren, D. (2019). Niche estimation above and below the species level. Trends in Ecology & Evolution, 34, 260–273.
- Song, W. H., & Li, J. J. (2023). The effects of intraspecific variation on forecasts of species range shifts under climate change. Science of the Total Environment, 857, 159513.
- Sotiropoulos, K., Legakis, A., & Polymeni, R. M. (2008). Patterns of morphometric variation in the alpine newt (Mesotriton alpestris) at the southern limit of its distribution: Environmental correlates. Integrative Zoology, 3, 123–133.
- Sparreboom, M. (2014). Salamanders of the Old World: The salamanders of Europe, Asia and Northern Africa. Brill.
10.1163/9789004285620 Google Scholar
- Šunje, E., Van Damme, R., Jelić, D., Mueller, M., Škrijelj, R., & Helfer, V. (2019). Morphometric characteristics of alpine salamanders: A support for subspecies validation and conservation? Amphibia-Reptilia, 40, 79–89.
- Thuiller, W., Damien, G., Maya, G., Robin, E., Frank, B., Bruno, L., & Remi, P. (2023). Package ‘biomod2’: Ensemble platform for species distribution modeling. R package version 4.2-5. https://biomodhub.github.io/biomod2/
- Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2016). biomod2: Ensemble platform for species distribution modeling. R package version 3.3–7. https://cran.rproject.org/web/packages/biomod2/index.html
- Tominaga, A., Matsui, M., Nishikawa, K., Tanabe, S., & Sato, S. (2005). Morphological discrimination of two genetic groups of a Japanese salamander, Hynobius naevius (Amphibia, Caudata). Zoological Science, 22, 1229–1244.
- Tran, D. V., Terui, S., Nomoto, K., & Nishikawa, K. (2021). Ecological niche differentiation of two salamanders (Caudata: Hynobiidae) from Hokkaido Island, Japan. Ecological Research, 36, 281–292.
- Tran, D. V., Vu, T. T., Fukutani, K., & Nishikawa, K. (2023). Demographic and ecological niche dynamics of the Vietnam warty newt, Paramesotriton deloustali: Historical climate influences. PLoS One, 18, e0290044.
- Ujvari, B., Casewell, N. R., Sunagar, K., Arbuckle, K., Wüster, W., Lo, N., O'Meally, D., Beckmann, C., King, G. F., & Deplazes, E. (2015). Widespread convergence in toxin resistance by predictable molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 112, 11911–11916.
- Vaissi, S. (2021). Potential changes in the distributions of near eastern fire salamander (Salamandra infraimmaculata) in response to historical, recent and future climate change in the near and Middle East: Implication for conservation and management. Global Ecology and Conservation, 29, e01730.
- Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7, 12558.
- Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. (2018). Last of the wild project, version 3 (LWP-3): 2009 human footprint, 2018 release.
- Vieites, D. R., Nieto-Román, S., & Wake, D. B. (2009). Reconstruction of the climate envelopes of salamanders and their evolution through time. Proceedings of the National Academy of Sciences of the United States of America, 106, 19715–19722.
- Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62, 2868–2883.
- Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611.
- Wells, K. D. (2007). The ecology and behavior of amphibians. University of Chicago press.
10.7208/chicago/9780226893334.001.0001 Google Scholar
- Werner, P., Lötters, S., Schmidt, B. R., Engler, J. O., & Rödder, D. (2013). The role of climate for the range limits of parapatric European land salamanders. Ecography, 36, 1127–1137.
- Williams, G. C. (2018). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press.
10.2307/j.ctv39x5jt Google Scholar
- World Bank. (2022). Vietnam country climate and development report. World Bank.
10.1596/37618 Google Scholar
- Wright, S. (1943). Isolation by distance. Genetics, 28, 114–138.
- Zhang, Z., Kass, J. M., Mammola, S., Koizumi, I., Li, X., Tanaka, K., Ikeda, K., Suzuki, T., Yokota, M., & Usio, N. (2021). Lineage-level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity and Distributions, 27, 684–695.