Estimating day range from camera-trap data: the animals’ behaviour as a key parameter
Corresponding Author
P. Palencia
Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
Correspondence
Pablo Palencia, Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain. Tel: 34 926295300.
Email. [email protected]
Search for more papers by this authorJ. Vicente
Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
Search for more papers by this authorP. Barroso
Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
Search for more papers by this authorJ.Á. Barasona
Animal Health Department, VISAVET Centre, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
Search for more papers by this authorR. C. Soriguer
Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
Search for more papers by this authorP. Acevedo
Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
Search for more papers by this authorCorresponding Author
P. Palencia
Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
Correspondence
Pablo Palencia, Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain. Tel: 34 926295300.
Email. [email protected]
Search for more papers by this authorJ. Vicente
Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
Search for more papers by this authorP. Barroso
Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
Search for more papers by this authorJ.Á. Barasona
Animal Health Department, VISAVET Centre, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
Search for more papers by this authorR. C. Soriguer
Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
Search for more papers by this authorP. Acevedo
Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
Search for more papers by this authorAbstract
Day range (DR), the distance travelled by an individual during the day, is an important metric in movement ecology that recently gained interest by its relevance for estimating population density through the random encounter model (REM). Traditionally, DR has been estimated using GPS technology and considering raw straight-line distances between consecutive locations, which is an underestimation of the true path distance. In this work, we tested the accuracy of a new approach based on camera-trap data for the estimation of DR taking into account the animals’ behaviour. For this purpose, we considered wild boar (Sus scrofa) as a model species. We tagged 18 individuals with telemetry devices and then monitored the population with camera-traps (photo and video mode) to estimate the DR. In the case of telemetry, a straight-line DR was estimated and rescaled with a tortuosity-related correction factor. Using this camera-trap data, we revisited the procedure described by Rowcliffe et al. (Remote Sens. Ecol. Conserv. , 2, 2016, 84) to estimate the DR from the speed and activity information obtained from camera-trapsping. A new derivation of this approach was then developed, in which different animal behaviours were weighted to estimate the DR. The analysis showed no significant differences between the DR values obtained using telemetry data (corrected by the tortuosity-related correction factor) and those attained with the weighted approach. However, the original approach used to estimate the DR based on camera-trap data underestimated this parameter. The DR estimated with the weighted approach was 12.74 km·day−1 ± (se) 1.89. Here, we showed that animals’ behaviour should be taken into account to estimate the DR when working with species that behave differently in front of cameras. These results may be relevant not only for REM, but also for movement ecology, disease dynamics and population monitoring methods.
Supporting Information
Filename | Description |
---|---|
jzo12710-sup-0001-AppendixS1.docxWord document, 55.7 KB | Appendix S1. Tortuosity-related correction factor. |
jzo12710-sup-0002-AppendixS2.docxWord document, 24.8 KB | Appendix S2. Cost-benefit analysis: camera-trap vs. telemetry. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Acevedo, P., Quirós-Fernández, F., Casal, J. & Vicente, J. (2014). Spatial distribution of wild boar population abundance: basic information for spatial epidemiology and wildlife management. Ecol. Indic. 36, 594–600.
- Alexander, G.J. & Maritz, B. (2015). Sampling interval affects the estimation of movement parameters in four species of African snakes. J. Zool. 297, 309–318.
- Andrewartha, H.G. & Birch, L.C. (1956). The distribution and abundance of animals. Chicago: University of Chicago press.
- Anile, S., Ragni, B., Randi, E., Mattucci, F. & Rovero, F. (2014). Wildcat population density on the Etna volcano, Italy: a comparison of density estimation methods. J. Zool. 293, 252–261.
- Bailey, L.L., MacKenzie, D.I. & Nichols, J.D. (2014). Advances and applications of occupancy models. Methods Ecol. Evol. 5, 1269–1279.
- Balestrieri, A., Ruiz-Gonzalez, A., Vergara, M., Capelli, E., Tirozzi, P., Alfino, S., Minuti, G., Prigioni, C. & Saino, N. (2016). Pine marten density in lowland riparian woods: a test of the Random Encounter Model based on genetic data. Mamm. Biol. 81, 439–446.
- Barasona, J., López-Olvera, J., Beltrán-Beck, B., Gortázar, C. & Vicente, J. (2013). Trap-effectiveness and response to tiletamine-zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral traps. BMC Vet. Res. 9, 107.
- Blome, S., Gabriel, C. & Beer, M. (2013). Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 173, 122–130.
- Buderman, F.E., Ivan, J.S., Shenk, T.M. and Hooten, M.B. 2016.A functional model for characterizing long-distances movement behaviour. Methods Ecol. Evol. 7: 264–273.
- Caravaggi, A., Zaccaroni, M., Riga, F., Schai-Braun, S.C., Dick, J.T.A., Montgomery, W.I. & Reid, N. (2016). An invasive-native mammalian species replacement process captured by camera trap survey random encounter models. Remote Sens. Ecol. Conserv. 2, 45–58.
- Caravaggi, A., Banks, P.B., Burton, A.C., Finlay, C.M.V., Haswell, P.M., Hayward, M.W., Rowcliffe, M.J. & Wood, M.D. (2017). A review of camera trapping for conservation behaviour research. Remote Sens. Ecol. Conserv. 3, 109–122.
- Chauvenet, A.L.M., Gill, R.M.A., Smith, G.C., Ward, A.I. & Massei, G. (2017). Quantifying the bias in density estimated from distance sampling and camera trapping of unmarked individuals. Ecol. Model. 350, 79–86.
- Cook, W.M., Anderson, R.M. & Schweiger, E.W. (2004). Is the matrix really inhospitable? Vole runway distribution in an experimentally fragmented landscape. Oikos 104, 5–14.
- Cross, P.C., Caillaud, D. & Heisey, D.M. (2013). Underestimating the effects of spatial heterogeneity due to individual movement and spatial scale: infectious disease as an example. Landscape Ecol. 28, 247–257.
- Cusack, J.J., Swanson, A., Coulson, T., Packer, C., Carbone, C., Dickman, A.J., Kosmala, M., Lintott, C. & Rowcliffe, J.M. (2015). Applying a random encounter model to estimate lion density from camera traps in Serengeti National Park, Tanzania. J. Wildl. Manage. 79, 1014–1021.
- Dewhirst, O.P., Evans, H.K., Roskilly, K., Harvey, R.J., Hubel, T.Y. & Wilson, A.M. (2016). Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning. Ecol. Evol. 6, 6210–6222.
- Dobly, A. (2001). Movement patterns of male common voles (Microtus arvalis) in a network of Y junctions: role of distant visual cues and scent marks. Canadian journal of zoology 79, 2228–2238.
- Engeman, R.M., Massei, G., Sage, M. & Gentle, M.N. (2013). Monitoring wild pig populations: a review of methods. Environ. Sci. Pollut. Res. 20, 8077–8091.
- Fleming, C.H., Fagan, W.F., Mueller, T., Olson, K.A., Leimgruber, P. & Calabrese, J.M. (2015). Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182–1188.
- Getz, W.M. & Saltz, D. (2008). A framework for generating and analyzing movement paths on ecological landscapes. Proc. Natl. Acad. Sci. U. S. A. 105, 19066–19071.
- Glen, A.S., Cockburn, S., Nichols, M., Ekanayake, J. & Warburton, B. (2013). Optimising camera traps for monitoring small mammals. PLoS One 8, e67940.
- Goodman, L.A. (1960). On the exact variance of products. J. Am. Stat. Assoc. 55, 708.
- Gortazar, C., Delahay, R.J., McDonald, R.A., Boadella, M., Wilson, G.J., Gavier-Widen, D. & Acevedo, P. (2012). The status of tuberculosis in European wild mammals. Mammal Rev. 42, 193–206.
- Gray, T.N.E. (2018). Monitoring tropical forest ungulates using camera-trap data. J. Zool. 305, 173–179.
- Hofmeester, T.R., Rowcliffe, J.M. & Jansen, P.A. (2017). A simple method for estimating the effective detection distance of camera traps. Remote Sens. Ecol. Conserv. 3, 81–89.
- Hurford, A. (2009). GPS measurement error gives rise to spurious 180° turning angles and strong directional biases in animal movement data. PLoS One 4, e5632.
- Hutchinson, J.M.C. & Waser, P.M. (2007). Use, misuse and extensions of “ideal gas” models of animal encounter. Biol. Rev. 82, 335–359.
- Johnson, D.D. & Ganskopp, D.C. (2008). GPS collar sampling frequency: effects on measures of resource use. Rangeland Ecol. Manag. 61, 226.
- Keuling, O., Sange, M., Acevedo, P., Podgorski, T., Smith, G., Scandura, M., Apollonio, M., Ferroglio, E. & Vicente, J. (2018). Guidance on estimation of wild boar population abundance and density: methods, challenges, possibilities. EFSA Support Publ, 15, 6.
- Laundre, J.W., Reynolds, T.D., Knick, S.T. & Ball, I.J. (1987). Accuracy of daily point relocations in assessing real movement of radio-marked animals. J. Wildl. Manage. 51, 937–940.
- Manzo, E., Bartolommei, P., Rowcliffe, J.M. & Cozzolino, R. (2012). Estimation of population density of European pine marten in central Italy using camera trapping. Acta Theriol. 57, 165–172.
- Massei, G., Kindberg, J., Licoppe, A., Gačić, D., Šprem, N., Kamler, J., Baubet, E., Hohmann, U., Monaco, A., Ozoliņš, J., Cellina, S., Podgórski, T., Fonseca, C., Markov, N., Pokorny, B., Rosell, C. & Náhlik, A. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 71, 492–500.
- Morelle, K., Podgorski, T., Prevot, C., Keuling, O., Lehaire, F. & Lejeune, P. (2015). Towards understanding wild boar Sus scrofa movement: a synthetic movement ecology approach. Mammal Rev. 45, 15–29.
- Musiani, M., Okarma, H. & Jędrzejewski, W. (1998). Speed and actual distances travelled by radiocollared wolves in Białowieża Primeval Forest (Poland). Acta Theriol. 43, 409–416.
- Nakashima, Y., Fukasawa, K. & Samejima, H. (2018). Estimating animal density without individual recognition using information derivable exclusively from camera traps. J. Appl. Ecol. 55, 735–744.
- Pépin, D., Adrados, C., Mann, C. & Janeau, G. (2004). Assessing real daily distance travelled by ungulates using differential GPS locations. J. Mammal. 85, 774–780.
- Pfeffer, S.E., Spitzer, R., Allen, A.M., Hofmeester, T.R., Ericsson, G., Widemo, F., Singh, N.J. & Cromsigt, J.P.G.M. (2018). Pictures or pellets? Comparing camera trapping and dung counts as methods for estimating population densities of ungulates. Remote Sens. Ecol. Conserv. 4, 173–183.
- Podgórski, T., Baś, G., Jędrzejewska, B., Sönnichsen, L., Śnieżko, S., Jędrzejewski, W. & Okarma, H. (2013). Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J. Mammal. 94, 109–119.
- Podgórski, T., Apollonio, M. & Keuling, O. (2018). Contact rates in wild boar populations: Implications for disease transmission. J. Wildl. Manage. 82, 1210–1218.
- Prichard, A.K., Yokel, D.A., Rea, C.L., Person, B.T. & Parrett, L.S. (2014). The effect of frequency of telemetry locations on movement-rate calculations in arctic caribou. Wildl. Soc. Bull. 38, 78–88.
- Rademaker, M., Meijaard, E., Semiadi, G., Blokland, S., Neilson, E.W. & Rode-Margono, E.J. (2016). First ecological study of the Bawean Warty Pig (Sus blouchi), One of the rarest pigs on earth. PLoS One 11, e0151732.
- Reynolds, T.D. & Laundre, J.W. (1990). Time intervals for estimating Pronghorn and Coyote home ranges and daily movements. J. Wildl. Manage. 54, 316.
- Rovero, F. & Marshall, A.R. (2009). Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46, 1011–1017.
- Rovero, F. & Zimmermann, F. (2016). Camera Trapping for Wildlife. Research. Pelagic Pu.
- Rowcliffe, J.M. (2016). Activity: Animal Activity Statistics R package version 1.1, https://CRAN.R-project.org/package=activity
- Rowcliffe, J.M., Field, J., Turvey, S.T. & Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 45, 1228–1236.
- Rowcliffe, J.M., Carbone, C., Kays, R., Kranstauber, B. & Jansen, P.A. (2012). Bias in estimating animal travel distance: the effect of sampling frequency. Methods Ecol. Evol. 3, 653–662.
- Rowcliffe, J.M., Kays, R., Carbone, C. & Jansen, P.A. (2013). Clarifying assumptions behind the estimation of animal density from camera trap rates. J. Wildl. Manage. 77, 876.
- Rowcliffe, J.M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P.A. (2014). Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179.
- Rowcliffe, J.M., Jansen, P.A., Kays, R., Kranstauber, B. & Carbone, C. (2016). Wildlife speed cameras: measuring animal travel speed and day range using camera traps. Remote Sens. Ecol. Conserv. 2, 84–94.
- Sennhenn-Reulen, H., Diedhiou, L., Klapproth, M. & Zinner, D. (2017). Estimation of baboon daily travel distances by means of point sampling – the magnitude of underestimation. Primate Biol. 4, 143–151.
- Spitz, F. & Janeau, G. (1990). Spatial strategies: an attempt to classify daily movements of wild boar. Acta Theriol. 35, 129–149.
- Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J.T., Burton, C., Townsend, S.E., Carbone, C., Rowcliffe, J.M., Whittington, J., Brodie, J., Royle, J.A., Switalski, A., Clevenger, A.P., Heim, N. & Rich, L.N. (2017). Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors. Front. Ecol. Environ. 15, 26–34.
- Tabak, M.A., Norouzzadeh, M.S., Wolfson, D.W., Sweeney, S.J., Vercauteren, K.C., Snow, N.P., Halseth, J.M., Di Salvo, P.A., Lewis, J.S., White, M.D., Teton, B., Beasley, J.C., Schlichting, P.E., Boughton, R.K., Wight, B., Newkirk, E.S., Ivan, J.S., Odell, E.A., Brook, R.K., Lukacs, P.M., Moeller, A.K., Mandeville, E.G., Clune, J. & Miller, R.S. (2019). Machine learning to classify animal species in camera trap images: applications in ecology. Methods Ecol. Evol. 10, 585–590.
- Tucker, M.A., Böhning-Gaese, K., Fagan, W.F., Fryxell, J.M., Van Moorter, B., Alberts, S.C., Ali, A.H., et al. 2018.Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359: 466–469.
- Turchin, P. (1999). Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sunderland, MA: Sinauer Associates, Inc. Publishers.
- Wald, A. & Wolfowitz, J. (1940). On a test whether two samples are from the same population. Ann. Stat. 11, 147–162.
- Zero, V.H., Sundaresan, S.R., O'Brien, T.G. & Kinnaird, M.F. (2013). Monitoring an Endangered savannah ungulate, Grevy's zebra Equus grevyi: choosing a method for estimating population densities. Oryx 47, 410–419.