Sex-specific dietary specialization in a terrestrial apex predator, the leopard, revealed by stable isotope analysis
Corresponding Author
C. C. Voigt
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Department of Animal Behavior, Institute of Biology, Berlin, Germany
Correspondence
Christian C. Voigt, Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
Email: [email protected]
Search for more papers by this authorM. Krofel
Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
Search for more papers by this authorV. Menges
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Search for more papers by this authorB. Wachter
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Search for more papers by this authorJ. Melzheimer
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Search for more papers by this authorCorresponding Author
C. C. Voigt
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Department of Animal Behavior, Institute of Biology, Berlin, Germany
Correspondence
Christian C. Voigt, Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
Email: [email protected]
Search for more papers by this authorM. Krofel
Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
Search for more papers by this authorV. Menges
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Search for more papers by this authorB. Wachter
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Search for more papers by this authorJ. Melzheimer
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Search for more papers by this authorAbstract
Apex predators in terrestrial ecosystems, such as leopards in the African savanna, feed on a wide variety of prey species, yet it is unknown whether individuals specialize on certain prey, and whether specialization changes with body traits. Here, we asked whether individual specialization of adult leopards (Panthera pardus) varies with sex, body mass, body length and age classes. We used the variation of stable carbon and nitrogen isotope ratios in 643 segments of whiskers as a temporal record of past diets and established isotopic dietary niches for 36 adult leopards (18 males, 18 females). Based on a variance analysis for stable carbon isotope ratios, we found that between-individual variation was larger than within-individual variation, indicating a high degree of overall specialization within the studied leopards. Female adult leopards exhibited larger isotopic dietary niche widths than male adult leopards. Isotopic niche width did not vary with body mass, body length or age. Our data suggest a difference in the level of specialization between the sexes, which might be explained by more opportunistic feeding of small-sized female leopards, most likely connected with a higher use of small prey species of different isotopic composition. Inter-sexual resource partitioning likely facilitates territory sharing between the sexes.
References
- Bailey, T.N. (1993). The African leopard: a study of the ecology and behavior of a solitary felid. New York: Columbia University Press.
10.7312/bail90198 Google Scholar
- Balme, G.A., Lindsey, P.A., Swanepoel, L.H. & Hunter, L.T.B. (2014). Failure of research to address the rangewide conservation needs of large carnivores: Leopards in South Africa as a case study. Conserv. Lett. 7, 3–11.
- Bell, A.M., Hankison, S.J. & Laskowski, K.L. (2009). The repeatability of behaviour: a meta-analysis. Anim. Behav. 77, 771–783.
- Bolnick, D.I., Amarasekare, P., Araújo, M.S., Bürger, R., Levine, J.M., Novak, M., Rudolf, V.H.W., Schreiber, S.J., Urban, M.C. & Vasseur, D. (2011). Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192.
- Bothma, J.D.P. & Coertze, R.J. (2004). Scent-marking frequency in southern Kalahari leopards. S. Afr. J. Wildl. Res. 34, 163–169.
- Bothma, J.D.P. & Le Riche, E.A. (1984). Aspects of the ecology and the behaviour of the leopard Panthera pardus in the Kalahari Desert. Koedoe 27, 259–279.
10.4102/koedoe.v27i2.585 Google Scholar
- Braczkowski, A., Watson, L., Coulson, D. & Randall, R. (2012). Diet of leopards in the southern Cape, South Africa. Afr. J. Ecol. 50, 377–380.
- Broekhuis, F., Thuo, D. & Hayward, M.W. (2018). Feeding ecology of cheetahs in the Maasai Mara, Kenya and the potential for intra-and interspecific competition. J. Zool. 304, 65–72.
- Cavalcanti, S.M.C. & Gese, E.M. (2010). Kill rates and predation patterns of jaguars (Panthera onca) in the southern Pantanal, Brazil. J. Mammal. 91, 722–736.
- Codron, J., Codron, D., Sponheimer, M., Kirkman, K., Duffy, K.J., Raubenheimer, E.J., Melice, J.L., Grant, R., Clauss, M. & Lee-Thorp, J.A. (2012). Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc. Roy. Soc. Lond. B. 279, 2433–2441.
- Darimont, C.T. & Reimchen, T.E. (2002). Intra-hair stable isotope analysis implies seasonal shift to salmon in gray wolf diet. Can. J. Zool. 80, 1638–1642.
- Darimont, C.T., Fox, C.H., Bryan, H.M. & Reimchen, T.E. (2015). The unique ecology of human predators. Science 349: 858–860.
- Dayan, T, & Simberloff, D. (1996). Patterns of size separation in carnivore communities. In: JL Gittleman, ed. Carnivore behavior, ecology, and evolution. Ithaca, NY: Cornell University Press.
- Elbroch, L.M., Lendrum, P.E., Robinson, H. & Quigley, H.B. (2016). Population- and individual-level prey selection by a solitary predator as determined with two estimates of prey availability. Can. J. Zool. 94, 275–282.
- Fattebert, J., Balme, G., Dickerson, T., Slotow, R. & Hunter, L. (2015). Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest. PLoS One 10, e0122355.
- Hayward, M.W., Henschel, P., O'Brien, J., Hofmeyr, M., Balme, G. & Kerley, G.I.H. (2006). Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313.
- Henschel, P., Abernethy, K.A. & White, L.J.T. (2005). Leopard food habits in the Lope National Park, Gabon, Central Africa. Afr. J. Ecol. 43, 21–28.
- Henschel, P., Hunter, L.T., Coad, L., Abernethy, K.A. & Mühlenberg, M. (2011). Leopard prey choice in the Congo Basin rainforest suggests exploitative competition with human bushmeat hunters. J. Zool. 285, 11–20.
- Hilderbrand, G.V., Schwartz, C.C., Robbins, C.T., Jacoby, M.E., Hanley, T.A., Arthur, S.M. & Servheen, C. (1999). The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138.
- Inskip, C. & Zimmermann, A. (2009). Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43, 18–34.
- Jackson, A.L., Parnell, A.C., Inger, R. & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602.
- Jackson, M.C., Donohue, I., Jackson, A.L., Britton, J.R., Harper, D.M. & Grey, J. (2012). Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7, e31757.
- Jooste, E., Hayward, M.W., Pitman, R.T. & Swanepoel, L.H. (2013). Effect of prey mass and selection on predator carrying capacity estimates. Eur. J. Wildl. Res. 59, 487–494.
- Kerth, G., Gusset, M., Garbely, J., König, B., Gabanapelo, T. & Schiess-Meier, M. (2013). Genetic sexing of stock-raiding leopards: not only males to blame. Cons. Genetics Res. 5, 1101–1105.
- Kim, S.L., Tinker, M.T., Estes, J.A. & Koch, P.L. (2013). Ontogenetic and among-individual variation in foraging strategies of northeast pacific white sharks based on stable isotope analysis. PLoS One 7, e45068.
- Klare, U., Kamler, J.F. & Macdonald, D.W. (2011). A comparison and critique of different scat-analysis methods for determining carnivore diet. Mamm. Rev. 41, 294–312.
- Krofel, M., Treves, A., Ripple, W.J., Chapron, G. & Lopez-Bao, J.V. (2015). Hunted carnivores at outsized risk. Science 350, 518–519.
- Lehmann, D., Mfune, J.K.E., Gewers, E., Brain, C. & Voigt, C.C. (2015). Individual variation of isotopic niches in grazing and browsing desert ungulates. Oecologia 179, 75–88.
- Linnell, J.D.C., Odden, J., Smith, M.E., Aanes, R. & Swenson, J.E. (1999). Large carnivores that kill livestock: do “problem individuals” really exist? Wildl. Soc. Bull. 27, 698–705.
- Macdonald, D.W., Loveridge, A.J. & Rabinowitz, A. (2010). Felid futures: crossing disciplines, borders and generations. Biology and conservation of wild felids: 599–650. D.W. Macdonald & A.J. Loveridge (Eds). Oxford: Oxford University Press.
- Martins, Q., Horsnell, W.G.C., Titus, W., Rautenbach, T. & Harris, S. (2011). Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J. Zool. 283, 81–87.
- Matich, P., Heithaus, M.R. & Layman, C.A. (2011). Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305.
- Mills, M.G.L. (1992). A comparison of methods used to study food habits of large African carnivores. In Wildlife 2001: populations: 1112–1123. D.R. McCullough & R.H. Barrett (Eds). London and New York: Elsevier Applied Science.
- Modlmeier, A.P., Keiser, C.N., Watters, J.V., Sih, A. & Pruitt, J.N. (2014). The keystone individual concept: an ecological and evolutionary overview. Anim. Behav. 89, 53–62.
- Mutirwara, R., Radloff, F.G.T. & Codron, D. (2017). Growth rate and stable carbon and nitrogen isotope trophic discrimination factors of lion and leopard whiskers. Rapid Commun. Mass Spectrom. 32, 33–47.
- Newsome, S.D., Tinker, M.T., Monson, D.H., Oftedal, O.T., Ralls, K., Staedler, M.M., Fogel, M.L. & Estes, J.A. (2009). Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90, 961–974.
- Pitman, R.T., Swanepoel, L.H. & Ramsay, P.M. (2012). Predictive modelling of leopard predation using contextual Global Positioning System cluster analysis. J. Zool. 288, 222–230.
- Pitman, R.T., Kilian, P.J., Ramsay, P.M. & Swanepoel, L.H. (2013a). Foraging and habitat specialization by female leopards (Panthera pardus) in the Waterberg Mountains of South Africa. S. Afr. J. Wildl. Res. 43, 167–176.
- Pitman, R.T., Mulvaney, J., Ramsay, P.M., Jooste, E. & Swanepoel, L.H. (2013b). Global Positioning System – located kills and faecal samples: a comparison of leopard dietary estimates. J. Zool. 292, 18–24.
- Popa-Lisseanu, A.G., Soergel, K., Luckner, A., Wassenaar, L.I., Ibáñez, C., Ciechanowski, M., Görföl, T., Niermann, I., Beuneux, G., Myslajek, R., Juste, J., Fonderflick, J., Kramer-Schadt, S., Kelm, D.H. & Voigt, C.C. (2012). A triple isotope approach to predict breeding origins of European bats. PLoS One 7, e38083.
- R Core Team (2014). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
- del Rio, C.M., Sabat, P., Anderson-Sprecher, R. & Gonzalez, S.P. (2009). Dietary and isotopic specialization: the isotopic niche of three Cinclodes ovenbirds. Oecologia 161, 149–159.
- Salo, P., Banks, P.B., Dickman, C.R. & Korpimäki, E. (2010). Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey. Ecol. Monogr. 80, 531–546.
- Sinclair, A.R.E., Mduma, S. & Brashares, J.S. (2003). Patterns of predation in a diverse predator-prey system. Nature 425, 288–290.
- Stander, P.E., Haden, P.J., Kaqece, I., & Ghau, I. (1997). The ecology of a sociality in Namibian leopards. J. Zool. 242, 343-364.
- Steyaert, S.M.J.G., Kindberg, J., Jerina, K., Krofel, M., Stergar, M., Swenson, J.E. & Zedrosser, A. (2014). Behavioral correlates of supplementary feeding of wildlife: can general conclusions be drawn?. Basic Appl. Ecol. 15, 669–676.
- Sunquist, M.E. & Sunquist, F. (2002). Wild cats of the World. Chicago: University of Chicago Press.
- Swanepoel, L.H., Lindsey, P., Somers, M.J., van Hoven, W. & Dalerum, F. (2014). The relative importance of trophy harvest and retaliatory killing for large carnivores; a case study on South African leopards. S. Afr. J. Wildl. Res. 44, 115–134.
- Swanepoel, L.H., Somers, M.J., van Hoven, W., Schiess-Meier, M., Owen, C., Snyman, A., Martins, Q., Senekal, C., Camacho, G., Boshoff, W. & Dalerum, F. (2015). Survival rates and causes of mortality of leopards Panthera pardus in southern Africa. Oryx 49, 595–603.
- Tambling, C.J., Laurence, S.D., Bellan, S.E., Cameron, E.Z., du Toit, J.T. & Getz, W.M. (2012). Estimating carnivoran diets using a combination of carcass observations and scats from GPS clusters. J. Zool. 286, 102–109.
- Terborgh, J., Lopez, L., Nunez, P., Rao, M., Shahabuddin, G., Orihuela, G., Riveros, M., Ascanio, R., Adler, G.H., Lambert, T.D. & Balbas, L. (2001). Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926.
- Urton, E.J.M. & Hobson, K.A. (2005). Intrapopulation variation in gray wolf isotope (d15N and d13C) profiles: implications for the ecology of individuals. Oecologia 145, 317–326.
- Voigt, C.C., Thalwitzer, S., Melzheimer, J., Blanc, A.-S., Jago, M. & Wachter, B. (2014). The conflict between cheetahs and humans on Namibian farmland elucidated by stable isotope diet analysis. PLoS One 9, e101917.
- Wachter, B., Blanc, A.S., Melzheimer, J., Höner, O.P., Jago, M. & Hofer, H. (2012). An advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS One 7, e38066.
- Weise, F., Lemeris, J., Stratford, K., Vuuren, R., Munro, S., Crawford, S., Marker, L. & Stein, A. (2015). A home away from home: insights from successful leopard (Panthera pardus) translocations. Biodivers. Conserv. 24, 1755–1774.
- Wolf, M. & Weissing, F.J. (2012). Animal personalities: consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461.