Continuous forest at higher elevation plays a key role in maintaining bird and mammal diversity across an Andean coffee-growing landscape
Corresponding Author
M. J. Bedoya-Durán
School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA
Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
Correspondence
María Juliana Bedoya-Durán, School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA.
Email: [email protected]
Search for more papers by this authorH. H. Jones
The Institute for Bird Populations, Petaluma, CA, USA
Florida Museum of Natural History, Gainesville, FL, USA
Search for more papers by this authorK. M. Malone
School of Natural Resources, University of Missouri, Columbia, MO, USA
Department of Environmental Science & Ecology, State University of New York-Brockport, Brockport, NY, USA
Search for more papers by this authorL. C. Branch
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
Search for more papers by this authorCorresponding Author
M. J. Bedoya-Durán
School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA
Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
Correspondence
María Juliana Bedoya-Durán, School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA.
Email: [email protected]
Search for more papers by this authorH. H. Jones
The Institute for Bird Populations, Petaluma, CA, USA
Florida Museum of Natural History, Gainesville, FL, USA
Search for more papers by this authorK. M. Malone
School of Natural Resources, University of Missouri, Columbia, MO, USA
Department of Environmental Science & Ecology, State University of New York-Brockport, Brockport, NY, USA
Search for more papers by this authorL. C. Branch
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
Search for more papers by this authorEditor: Karl Evans
Associate Editor: Lisanne Petracca
Abstract
Shade coffee is among the most widespread and economically important crops in montane tropical regions and is considered more hospitable to wildlife than non-shaded crops. Questions remain regarding the value of shade coffee as habitat for wildlife, however, given the historical research focus on small-bodied and canopy species. Simultaneously, climate-driven upslope migration of coffee crops represents an emerging threat to well-conserved tropical montane forest at higher elevations. This study examined ground-dwelling birds and medium-large mammals in a shade coffee landscape of the Western Andes of Colombia. We asked the following questions: (1) How do bird and mammal occupancy, richness, and community composition change from continuous forest at higher elevations to middle-elevation forest fragments and shade coffee? (2) Do birds and mammals differ in their response to shade coffee? (3) Do high-elevation forests contribute to maintaining biodiversity in mid-elevation shade coffee? We sampled birds and mammals with camera traps in middle-elevation shade coffee plantations and forest fragments and in continuous forest further upslope. We then used a multi-species occupancy model to correct for imperfect detection and to estimate occupancy, richness, and community composition. Shade coffee lacked ~50% of the bird and mammal species found in continuous forest, primarily large-bodied and insectivorous birds and forest-specialist and large-bodied mammals. Forest fragment richness was closer to shade coffee than to continuous forest, but species composition significantly differed between coffee and both forest types. Birds in coffee plantations were generally a unique subset of disturbance-adapted specialists, whereas mammals in coffee were mostly generalists. Distance from continuous forest was the most important landscape-level predictor of occupancy for both taxa, suggesting that this forest plays a key role in maintaining biodiversity across the coffee landscape. Biodiversity conservation in shade coffee landscapes, therefore, will be ineffective unless linked to landscape-level initiatives that conserve higher elevation tropical montane forest.
Conflict of interest
The authors have no conflicts of interest to declare.
Supporting Information
Filename | Description |
---|---|
acv12857-sup-0001-Supinfo.docxWord 2007 document , 1.3 MB | Table S1. Species of ground-dwelling birds captured on cameras, IUCN status, published altitudinal range, and number of independent records in shade coffee plantations, forest fragments, and continuous forest in the Serranía de Los Paraguas region in the Western Andes of Colombia from July 2016 to July 2018. Table S2. Species of mammals captured on cameras, IUCN status, published altitudinal range, and number of independent records in shade coffee plantations, forest fragments, and continuous forest in the Serranía de Los Paraguas region of the Western Andes of Colombia from July 2016 to July 2018. Table S3. Overall producer's and user's accuracies and confusion matrix for the model used to build the land-use map. Table S4. Table showing the travel cost assigned for each class. Table S5. Covariates (mean ± SD) by land-use type used to model species detectability and occupancy and to control for the altitudinal gradient in the landscape. Table S6. Correlation coefficients among vegetation and landscape variables used to model species detectability and occupancy and control for the elevational gradient. Figure S1. Land-use map and forest polygon built to calculate landscape level variables for the multi-species occupancy model. Figure S2. GIS layers (a and b) built to produce a final human disturbance map (c). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ahumada, J.A., Silva, C.E.F., Gajapersad, K., Hallam, C., Hurtado, J., Martin, E., McWilliam, A., Mugerwa, B., O'Brien, T., Rovero, R., Sheil, D., Spironello, W.R., Winarni, N. & Andelman, S.J. (2011). Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos. Trans. R. Soc. B 366, 2703–2711.
- Amit, R. & Jacobson, S.K. (2018). Participatory development of incentives to coexist with jaguars and pumas. Conserv. Biol. 32, 938–948.
- Anand, M.O., Krishnaswamy, J. & Das, A. (2008). Proximity to forests drives bird conservation value of coffee plantations: implications for certification. Ecol. Appl. 18, 1754–1763.
- Anderson, M.J. (2017). Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online, 1–15.
- Arellano, L., Favila, M.E. & Huerta, C. (2005). Diversity of dung and carrion beetles in a disturbed Mexican tropical montane cloud forest and on shade coffee plantations. Biodivers. Conserv. 14, 601–615.
- Armenteras, D., Rodríguez, N., Retana, J. & Morales, M. (2011). Understanding deforestation in montane and lowland forests of the Colombian Andes. Reg. Environ. Change 11, 693–705.
- Ausprey, I.J., Newell, F.L. & Robinson, S.K. (2021). Adaptations to light predict the foraging niche and disassembly of avian communities in tropical countrysides. Ecology 102, e03213.
- Bakermans, M.H., Vitz, A.C., Rodewald, A.D. & Rengifo, C.G. (2009). Migratory songbird use of shade coffee in the Venezuelan Andes with implications for conservation of cerulean warbler. Biol. Conserv. 142, 2476–2483.
- Bali, A., Kumar, A. & Krishnaswamy, J. (2007). The mammalian communities in coffee plantations around a protected area in the Western Ghats, India. Biol. Conserv. 139, 93–102.
- Bedoya-Durán, M.J., Murillo-García, O.E. & Branch, L.C. (2021). Factors outside privately protected areas determine mammal assemblages in a global biodiversity hotspot in the Andes. Glob. Ecol. Conserv. 32, e01921.
- Bhagwat, S.A., Willis, K.J., Birks, H.J.B. & Whittaker, R.J. (2008). Agroforestry: a refuge for tropical biodiversity? Trends Ecol. Evol. 23, 261–267.
- S.M. Billerman, B.K. Keeney, P.G. Rodewald & T.S. Schulenberg (Eds.). (2023). Birds of the world. Ithaca: Cornell Laboratory of Ornithology.
- Boesing, A.L., Nichols, E. & Metzger, J.P. (2018). Land use type, forest cover and forest edges modulate avian cross-habitat spillover. J. Appl. Ecol. 55, 1252–1264.
- Buechley, E.R., Şekercioğlu, Ç.H., Atickem, A., Gebremichael, G., Ndungu, J.K., Mahamued, B.A., Beyene, T., Mekonnen, T. & Lens, L. (2015). Importance of Ethiopian shade coffee farms for forest bird conservation. Biol. Conserv. 188, 50–60.
- Bush, M.B. (2002). Distributional change and conservation on the Andean flank: a palaeoecological perspective. Glob. Ecol. Biogeogr. 11, 463–473.
- Cannon, P.G., Gilroy, J.J., Tobias, J.A., Anderson, A., Haugaasen, T. & Edwards, D.P. (2019). Land-sparing agriculture sustains higher levels of avian functional diversity than land sharing. Glob. Chang. Biol. 25, 1576–1590.
- Cassano, C.R., Barlow, J. & Pardini, R. (2012). Large mammals in an agroforestry mosaic in the Brazilian Atlantic forest. Biotropica 44, 818–825.
- Caudill, S.A., DeClerck, F.J.A. & Husband, T.P. (2015). Connecting sustainable agriculture and wildlife conservation: does shade coffee provide habitat for mammals? Agric. Ecosyst. Environ. 199, 85–93.
- Caudill, S.A. & Rice, R.A. (2016). Do bird Friendly® coffee criteria benefit mammals? Assessment of mammal diversity in Chiapas, Mexico. PLoS One 11, 1–12.
- Chandler, R.B., King, D.I., Raudales, R., Trubey, R., Chandler, C. & Chávez, V.J.A. (2013). A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes. Conserv. Biol. 27, 785–795.
- Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T.C., Anshary, A., Buchori, D., Cicuzza, D., Darras, K., Putra, D.D., Erasmi, S., Pitopang, R., Schmidt, C., Schulze, C.H., Seidel, D., Steffan-Dewenter, I., Stenchly, K., Vidal, S., Weist, M., Wielgoss, A.C. & Tscharntke, T. (2011). Combining high biodiversity with high yields in tropical agroforests. Proc. Natl. Acad. Sci. USA 108, 8311–8316.
- Devarajan, K., Morelli, T.L. & Tenan, S. (2020). Multi-species occupancy models: review, roadmap, and recommendations. Ecography 43, 1–13.
- Dirzo, R. & Raven, P.H. (2003). Global state of biodiversity and loss. Annu. Rev. Env. Resour. 28, 137–167.
- Dolia, J., Devy, M.S., Aravind, N.A. & Kumar, A. (2008). Adult butterfly communities in coffee plantations around a protected area in the Western Ghats, India. Anim. Conserv. 11, 26–34.
- Dorazio, R.M. & Royle, J.A. (2005). Estimating size and composition of biological communities by modeling the occurrence of species. J. Am. Stat. Assoc. 100, 389–398.
- Dorazio, R.M., Royle, J.A., Söderström, B. & Glimskär, A. (2006). Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87, 842–854.
- Ducatez, S., Tingley, R. & Shine, R. (2014). Using species co-occurrence patterns to quantify relative habitat breadth in terrestrial vertebrates. Ecosphere 5, 1–12.
- Estrada, C.G., Damon, A., Hernández, C.S., Pinto, L.S. & Núñez, G.I. (2006). Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biol. Conserv. 132, 351–361.
- Etana, B., Atickem, A., Tsegaye, D., Bekele, A., De Beenhouwer, M., Hundera, K., Lens, L., Fashing, P.J. & Stenseth, N.C. (2021). Traditional shade coffee forest systems act as refuges for medium- and large-sized mammals as natural forest dwindles in Ethiopia. Biol. Conserv. 260, 109219.
- Fisher, K. & Didier, K. (2012). Summed point influence (SPI) tool v.1.0 beta.
- Gebremichael, G., Hundera, K., De Decker, L., Aerts, R., Lens, L. & Atickem, A. (2022). Bird community composition and functional guilds response to vegetation structure in Southwest Ethiopia. Forests 13, 2068.
- Gilroy, J.J. & Edwards, D.P. (2017). Source-sink dynamics: a neglected problem for landscape-scale biodiversity conservation in the tropics. Curr. Landsc. Ecol. Rep. 2, 51–60.
10.1007/s40823-017-0023-3 Google Scholar
- Gordon, C., Manson, R., Sundberg, J. & Cruz-Angón, A. (2007). Biodiversity, profitability, and vegetation structure in a Mexican coffee agroecosystem. Agric. Ecosyst. Environ. 118, 256–266.
- Greenberg, R., Bichier, P., Angon, A.C., MacVean, C., Perez, R. & Cano, E. (2000). The impact of avian insectivory on arthropods and leaf damage in some Guatemalan coffee plantations. Ecology 81, 1750–1755.
- Greeney, H.F. (2018). Antpittas and gnateaters. London: Helm.
- Harris, J.B.C., Putra, D.D., Gregory, S.D., Brook, B.W., Prawiradilaga, D.M., Sodhi, N.S., Wei, D. & Fordham, D.A. (2014). Rapid deforestation threatens mid-elevational endemic birds but climate change is most important at higher elevations. Divers. Distrib. 20, 773–785.
- Harvey, C.A., Pritts, A.A., Zwetsloot, M.J., Jansen, K., Pulleman, M.M., Armbrecht, I., Avelino, J., Barrera, J.F., Bunn, C., García, J.H., Isaza, C., Munoz-Ucros, J., Pérez-Alemán, C.J., Rahn, E., Robiglio, V., Somarriba, E. & Valencia, V. (2021). Transformation of coffee-growing landscapes across Latin America. A review. Agron. Sustain. Dev. 41, 62.
- Hervé, M. (2020). Package ‘RVAideMemoire’: testing and plotting procedures for biostatistics. Version 0.9-75.
- Hilty, S.L. (2021). Birds of Colombia. Lynx and Birdlife International Field Guides. Barcelona: Lynx Editions.
- Hsieh, T.C., Ma, K.H. & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456.
- IUCN. (2022). The IUCN red list of threatened species. Version 2022-1. http://www.iucnredlist.org. Accessed 25 August 2020.
- Jha, S., Bacon, C.M., Philpott, S.M., Méndez, V.E., Läderach, P. & Rice, R.A. (2014). Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64, 416–428.
- Jones, H.H., Barreto, E., Murillo, O. & Robinson, S.K. (2021). Turnover-driven loss of forest-dependent species changes avian species richness, functional diversity, and community composition in Andean forest fragments. Glob. Ecol. Conserv. 32, e01922.
- Karger, D.N., Kessler, M., Lehnert, M. & Jetz, W. (2021). Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. 5, 854–862.
- Kattan, G.H. & Beltran, J.W. (1999). Altitudinal distribution, habitat use, and abundance of Grallaria antpittas in the Central Andes of Colombia. Bird Conserv. Int. 9, 271–281.
- Keinath, D.A., Doak, D.F., Hodges, K.E., Prugh, L.R., Fagan, W., Sekercioglu, C.H., Buchart, S.H.M. & Kauffman, M. (2017). A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127.
10.1111/geb.12509 Google Scholar
- Kéry, M. & Royle, J.A. (2016). Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in R and BUGS, Vol. 1. Cambridge: Academic Press.
- Kéry, M. & Schaub, M. (2012). Bayesian population analysis using WinBUGS: a hierarchical perspective. Waltham, MA: Academic Press.
- Kupsch, D., Vendras, E., Ocampo-Ariza, C., Batáry, P., Njie, F., Kadiri, M., Bobo, S. & Waltert, M. (2019). High critical forest habitat thresholds of native bird communities in Afrotropical agroforestry landscapes. Biol. Conserv. 230, 20–28.
- Larsen, T.H., Brehm, G., Navarrete, H., Franco, P., Gomez, H., Mena, J.L., Morales, V., Argollo, J., Blacutt, L. & Canhos, V. (2011). Range shifts and extinctions driven by climate change in the tropical Andes: synthesis and directions. In Climate change and biodiversity in the tropical Andes: 47–67. S.K. Herzog, R. Martinez, P.M. Jørgensen & H. Tiessen (Eds.) Paris: Scientific Committee on Problems of the Environment.
- Laurance, W., Vasconcelos, H. & Lovejoy, T. (2000). Forest loss and fragmentation in the Amazon: Implications for wildlife conservation. Oryx 34, 39–45.
- Lees, A.C. & Peres, C.A. (2009). Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118, 280–290.
- Leyequién, E., de Boer, W.F. & Toledo, V.M. (2010). Bird community composition in a shaded coffee agro-ecological matrix in Puebla, Mexico: the effects of landscape heterogeneity at multiple spatial scales. Biotropica 42, 236–245.
- Lin, B.B., Perfecto, I. & Vandermeer, J. (2008). Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience 58, 847–854.
- Lino, A., Fonseca, C., Rojas, D., Fischer, E. & Pereira, M.J.R. (2019). A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals. Mamm. Biol. 94, 69–76.
- MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L. & Hines, J.E. (2006). Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. San Diego: Academic Press.
- Marra, P.P. & Remsen, J.V. (1997). Insights into the maintenance of high species diversity in the Neotropics: habitat selection and foraging behavior in understory birds of tropical and temperate forests. Ornithol. Monogr. 48, 445–483.
10.2307/40157547 Google Scholar
- Mas, A.H. & Dietsch, T.V. (2004). Linking shade coffee certification to biodiversity conservation: butterflies and birds in Chiapas, Mexico. Ecol. App. 14, 642–654.
- Mertens, J.E., Emsens, W.J., Jocqué, M., Geeraert, L.O.R.E. & De Beenhouwer, M. (2020). From natural forest to coffee agroforest: implications for communities of large mammals in the Ethiopian highlands. Oryx 54, 715–722.
- Moguel, P. & Toledo, V.M. (1999). Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13, 11–21.
- Muriel, S.B. & Kattán, G.H. (2009). Effects of patch size and type of coffee matrix on ithomiine butterfly diversity and dispersal in cloud-forest fragments. Conserv. Biol. 23, 948–956.
- Neate-Clegg, M.H.C., Jones, S.E.I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç.H. (2018). Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815.
- Oksanen, A.J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Henry, H.M., Szoecs, E.S. & Wagner, H. (2016). Package “vegan”: community ecology package (version 2.4-0).
- Patterson, B.D., Stotz, D.F., Solari, S., Fitzpatrick, J.W. & Pacheco, V. (1998). Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. J. Biogeogr. 25, 593–607.
- Perfecto, I., Mas, A., Dietsch, T. & Vandermeer, J. (2003). Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodivers. Conserv. 12, 1239–1252.
- Pham, Y., Reardon-Smith, K., Mushtaq, S. & Cockfield, G. (2019). The impact of climate change and variability on coffee production: a systematic review. Clim. Change 156, 609–630.
- Philpott, S.M., Arendt, W.J., Armbrecht, I., Bichier, P., Diestch, T.V., Gordon, C., Greenberg, R., Perfecto, I., Reynoso-Santos, R., Soto-Pinto, L., Tejeda-Cruz, C., Williams-Linera, G., Valenzuela, J. & Zolotoff, J.M. (2008). Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv. Biol. 22, 1093–1105.
- Philpott, S.M. & Bichier, P. (2012). Effects of shade tree removal on birds in coffee agroecosystems in Chiapas, Mexico. Agric. Ecosyst. Environ. 149, 171–180.
- Pineda, E., Moreno, C., Escobar, F. & Halffter, G. (2005). Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conserv. Biol. 19, 400–410.
- Plummer, M. (2017). JAGS: a program for the statistical analysis of Bayesian hierarchical models by Markov chain Monte Carlo.
- Powell, L.L., Cordeiro, N.J. & Stratford, J.A. (2015). Ecology and conservation of avian insectivores of the rainforest understory: a pantropical perspective. Biol. Conserv. 188, 1–10.
- Quiroga, V.A., Noss, A.J., Paviolo, A., Boaglio, G.I. & Di Bitettia, M.S. (2016). Puma density, habitat use and conflict with humans in the Argentine Chaco. J. Nat. Conserv. 31, 9–15.
- Ramirez-Villegas, J., Challinor, A.J., Thornton, P.K. & Jarvis, A. (2013). Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 024018.
- Rand, T.A., Tylianakis, J.M. & Tscharntke, T. (2006). Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9, 603–614.
- Renjifo, L.M. (2001). Effect of natural and anthropogenic landscape matrices on the abundance of subandean bird species. Ecol. App. 11, 14–31.
- Rodrigues, P., Shumi, G., Dorresteijn, I., Schultner, J., Hanspach, J., Hylander, K., Senbeta, F. & Fischer, J. (2018). Coffee management and the conservation of forest bird diversity in southwestern Ethiopia. Biol. Conserv. 217, 131–139.
- Rovero, F., Ahumada, J., Jansen, P.A., Sheil, D., Alvarez, P., Boekee, K., Espinosa, S., Lima, M.G.M., Martin, E.H., O'Brien, T.G., Salvador, J., Santos, F., Rosa, M., Zvoleff, A., Sutherland, C. & Tenan, S. (2020). A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. Ecography 42, 1–10.
- Royle, J.A. & Dorazio, R.M. (2008). Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Cambridge: Academic Press.
- Saldaña-Vázquez, R.A., Sosa, V.J., Hernández-Montero, J.R. & López-Barrera, F. (2010). Abundance responses of frugivorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous Central Veracruz, Mexico. Biodivers. Conserv. 19, 2111–2124.
- Schipper, J., Chanson, J., Chiozza, F., Cox, N.A., Hoffmann, M., Katariya, V., Lamoreux, J., Rodrigues, A.S., Stuart, S.N., Temple, H.J. & Baillie, J. (2008). The status of the world's land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230.
- Solari, S., Muñoz-Saba, Y., Rodríguez-Mahecha, J.V., Defler, T.R., Ramírez-Chaves, H.E. & Trujillo, F. (2013). Riqueza, endemismo y conservación de los mamíferos de Colombia. Mastozool. Neotrop. 20, 301–365.
- Soto-Saravia, R.A., Garrido-Cayul, C.M., Avaria-Llautureo, J., Benítez-Mora, A., Hernández, C.E. & González-Suárez, M. (2021). Threatened neotropical birds are big, ecologically specialized, and found in less humanized refuge areas. Avian Conserv. Ecol. 16, 18.
- Stratford, J.A. & Stouffer, P.C. (2015). Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds. Biol. Conserv. 188, 109–115.
- Tejeda-Cruz, C. & Sutherland, W.J. (2004). Bird responses to shade coffee production. Anim. Conserv. 7, 169–179.
- Tobler, M.W., Zúñiga-Hartley, A., Carrillo-Percastegui, S.E. & Powell, G.V.N. (2015). Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. J. Appl. Ecol. 52, 413–421.
- Tracewski, Ł., Butchart, S.H.M., Donald, P.F., Evans, M., Fishpool, L.D.C. & Buchanan, G.M. (2016). Patterns of twenty-first century forest loss across a global network of important sites for biodiversity. Remote Sens. Ecol. Conserv. 2, 37–44.
- Tscharntke, T., Milder, J.C., Schroth, G., Clough, Y., DeClerck, F., Waldron, A., Rice, R. & Ghazoul, J. (2015). Conserving biodiversity through certification of tropical agroforestry crops at local and landscape scales. Conserv. Lett. 8, 14–23.
- UNESCO. (2020). Coffee cultural landscape of Colombia. https://whc.unesco.org/en/list/. Accessed 10 February 2022.
- Vandermeer, J. & Perfecto, I. (2007). The agricultural matrix and a future paradigm for conservation. Conserv. Biol. 21, 274–277.
- Zimmerman, K.D., Espeland, M.A. & Langefeld, C.D. (2021). A practical solution to pseudoreplication bias in single-cell studies. Nat. Commun. 12, 738.