Density and climate effects on age-specific survival and population growth: consequences for hibernating mammals
Corresponding Author
F. J. Combe
Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
Division of Biology, Kansas State University, Manhattan, KS, USA
Correspondence
Fraser J. Combe, Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester, Metropolitan University, Manchester M1 5GD, UK.
Email: [email protected]
Search for more papers by this authorJ. S. Ellis
School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
Search for more papers by this authorJ. Norrey
Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
Search for more papers by this authorW. E. Harris
Agriculture and Environment Sciences Department, Harper Adams University, Newport, UK
Search for more papers by this authorCorresponding Author
F. J. Combe
Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
Division of Biology, Kansas State University, Manhattan, KS, USA
Correspondence
Fraser J. Combe, Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester, Metropolitan University, Manchester M1 5GD, UK.
Email: [email protected]
Search for more papers by this authorJ. S. Ellis
School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
Search for more papers by this authorJ. Norrey
Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
Search for more papers by this authorW. E. Harris
Agriculture and Environment Sciences Department, Harper Adams University, Newport, UK
Search for more papers by this authorEditor: Rahel Sollmann
Abstract
The impact of factors such as density dependence, food availability and weather are known to be important for predicting population change in a wide range of species. However, a challenge in ecology is understanding the contributory and interactive role of these drivers on populations. This is necessary to design effective conservation and management strategies. Using data from long-term studies of five hazel dormouse Muscardinus avellanarius populations in Europe, we tested the relationship between population density and weather and their impact on demographic rates. We used an integrated population modelling approach, estimating age-specific overwinter survival, annual population growth and fecundity rates. We found strong negative effects of population density, precipitation and winter temperature on population growth rates. This suggests that warmer and wetter weather negatively affects dormouse survival for both adults and juveniles, but we found subtle differences in these effects between age classes. We also identified an interaction between weather measures and population density on age-specific survival, possibly as a result of weather impacts during hibernation. Although we found low winter temperature was positively associated with population growth, we found evidence consistent with density dependence. We discuss our results in the context of woodland habitat conservation management.
Supporting Information
Filename | Description |
---|---|
acv12843-sup-0001-Supinfo.docxWord 2007 document , 597.7 KB | Table S1. Glossary of variables used for climate analyses. Random Forest analyses indicated the top ranked variables that explained variation in the data. Variables in bold* were removed from further analyses after Random Forest analyses and the top 10 variables were kept for climate analyses. Table S2. Regression coefficient (adj.R2) as the strength of density dependence evaluated against zero (Slope) and significance values (P). A negative coefficient indicates negative density dependence characterised by a decrease in population growth rate as population abundance increases Table S3. Environmental variables collated for each population displayed as mean (min, max) Table S4. Model averaging results for all populations investigating population growth rate, fecundity and survival of Adults and Juveniles. Model averaging results are shown with effect sizes (β) and standard error (SE) and 95% confidence intervals (CI). Model terms with 95% confidence intervals not intersecting zero are shown in bold and were considered to explain significant patterns in the data as detailed in Grueber et al. (2011). For definition of explanatory variables see Supplementary Table S1. Figure S1. Graphical representation of an Integrated Population Model for the hazel dormouse, adapted from Abadi et al. (2010). Arrows demonstrate dependency between nodes and sub-models are represented by dotted rectangles. Node notations: R, number of nest counts; J, Juvenile counts each capture occasion; f, fecundity – number of young produced per adult; Sjuv, Juvenile survival probability; Sad, adult survival probability; m, CMR data; Pm, capture probability of marked individuals; y, population count data; σ2, observation error on count data; N, true population abundance. Figure S2. Testing assumptions of linearity and homoscedasticity for each linear model. Plot of residuals verses predicted (i.e. fitted) values. Residuals are spread equally around horizontal line and qqplots signify normality. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Abadi, F., Gimenez, O., Ullrich, B., Arlettaz, R. & Schaub, M. (2010). Estimation of immigration rate using integrated population models. J. Appl. Ecol. 47, 393–400.
- Adamík, P. & Král, M. (2008). Climate- and resource-driven long-term changes in dormice populations negatively affect hole-nesting songbirds. J. Zool. 275, 209–215.
- Allen, M., Babiker, M., Chen, Y., Taylor, M., Tschakert, P., Waisman, R., Warren, P. & Zhai, P. (2018). Global warming of 1.5°C an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Vol. 32.
- Andrewartha, H.G. & Birch, L.C. (1954). The distribution and abundance of animals: 37. Chicago: Chicago Univ Press.
- Barker, T. (2007). Climate change 2007: an assessment of the intergovernmental panel on climate change. Change 446, 12–17.
- Bartón, K. (2015). MuMIn: model selection and model averaging based on information criteria (AICc and alike). R-package version, 1.
- Bates, D., Maechler, M., Bolker, B.M. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48.
- Bjørnstad, O.N. & Grenfell, B.T. (2001). Noisy clockwork: time series analysis of population fluctuations in animals. Science (80-) 293, 638–643.
- Bonebrake, T.C., Christensen, J., Boggs, C.L. & Ehrlich, P.R. (2010). Population decline assessment, historical baselines, and conservation. Conserv. Lett. 3, 371–378.
- Boyce, M.S., Haridas, C.V., Lee, C.T., Boggs, C.L., Bruna, E.M., Coulson, T., Doak, D., Drake, J.M., Gaillard, J.M., Horvitz, C.C., Kalisz, S., Kendall, B.E., Knight, T., Mastrandrea, M., Menges, E.S., Morris, W.F., Pfister, C.A. & Tuljapurkar, S.D. (2006). Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148.
- Boyce, M.S. & McDonald, L.L. (1999). Relating populations to habitats using resource selection functions. Trends Ecol. Evol. 14, 268–272.
- Boyles, J.G., Seebacher, F., Smit, B. & McKechnie, A.E. (2011). Adaptive thermoregulation in endotherms may alter responses to climate change. Integr. Comp. Biol. 51, 676–690.
- Bright, P.W., Morris, P.A. & Mitchell-Jones, A. (2006). The dormouse conservation handbook. English Nat. 75, 31–62.
- Buckland, S.T., Newman, K.B., Fernández, C., Thomas, L. & Harwood, J. (2007). Embedding population dynamics models in inference. Stat. Sci. 22, 44–58.
- Burnham, K.P. & Anderson, D.R. (1998). Practical use of the information-theoretic approach. In Model selection and inference: 49–97. 2nd edn. New York: Springer.
10.1007/978-1-4757-2917-7_3 Google Scholar
- Burnham, K.P., Anderson, D.R., White, G.C., Brownie, C. & Pollock, K.H. (1989). Design and analysis methods for fish survival experiments based on release-recapture. Am. Fish. Soc. Monogr. 5, 437.
- Chaudhary, A., Burivalova, Z., Koh, L.P. & Hellweg, S. (2016). Impact of Forest management on species richness: global meta-analysis and economic trade-offs. Sci. Rep. 6, 23954.
- Churcher, T.S., Filipe, J.A.N. & Basáñez, M.G. (2006). Density dependence and the control of helminth parasites. J. Anim. Ecol. 75, 1313–1320.
- Cordes, L.S., Blumstein, D.T., Armitage, K.B., CaraDonna, P.J., Childs, D.Z., Gerber, B.D., Martin, J.G.A., Oli, M.K. & Ozgul, A. (2020). Contrasting effects of climate change on seasonal survival of a hibernating mammal. Proc. Natl. Acad. Sci. USA 117, 18119–18126.
- Coulson, T. (2001). Age, sex, density, winter weather, and population crashes in Soay sheep. Science (80-) 292, 1528–1531.
- de Lacerda, A.E.B. & Nimmo, E.R. (2010). Can we really manage tropical forests without knowing the species within? Getting back to the basics of forest management through taxonomy. For. Ecol. Manage. 259, 995–1002.
- Eberhardt, L.L. (2002). A paradigm for population analysis of long-lived vertebrates. Ecology 83, 2841–2854.
- Erb, J., Boyce, M.S. & Stenseth, N.C. (2001). Population dynamics of large and small mammals. Oikos 92, 3–12.
- Fahrig, L. & Paloheimo, J. (1988). Effect of spatial arrangement of habitat patches on local population size. Ecology 69, 468–475.
- Falvo, C.A., Koons, D.N. & Aubry, L.M. (2019). Seasonal climate effects on the survival of a hibernating mammal. Ecol. Evol. 9, 3756–3769.
- Fauteux, D., Stien, A., Yoccoz, N.G., Fuglei, E. & Ims, R.A. (2021). Climate variability and density-dependent population dynamics: lessons from a simple high Arctic ecosystem. Proc. Natl. Acad. Sci. USA 118, 2106635118.
- Fedyń, I., Figarski, T. & Kajtoch, Ł. (2021). Overview of the impact of forest habitats quality and landscape disturbances on the ecology and conservation of dormice species. Eur. J. For. Res. 140, 511–526.
- Fietz, J., Pflug, M., Schlund, W. & Tataruch, F. (2004). Influences of the feeding ecology on body mass and possible implications for reproduction in the edible dormouse (Glis glis). J. Comp. Physiol. B 175, 45–55.
- Flowerdew, J.R., Amano, T. & Sutherland, W.J. (2017). Strong “bottom-up” influences on small mammal populations: state-space model analyses from long-term studies. Ecol. Evol. 7, 1699–1711.
- Gaillard, J.M., Mark Hewison, A.J., Klein, F., Plard, F., Douhard, M., Davison, R. & Bonenfant, C. (2013). How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecol. Lett. 16, 48–57.
- Gamelon, M., Grøtan, V., Nilsson, A.L.K., Engen, S., Hurrell, J.W., Jerstad, K., Phillips, A.S., Røstad, O.W., Slagsvold, T., Walseng, B., Stenseth, N.C. & Sæther, B.-E. (2017). Interactions between demography and environmental effects are important determinants of population dynamics. Sci. Adv. 3, e1602298.
- Gelman, A. & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472.
10.1214/ss/1177011136 Google Scholar
- Genuer, R., Poggi, J.M. & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognit. Lett. 31, 2225–2236.
- Gimenez, O., Lebreton, J.D., Choquet, R. & Pradel, R. (2018). R2ucare: an r package to perform goodness-of-fit tests for capture–recapture models. Methods Ecol. Evol. 9, 1749–1754.
- Goodwin, C.E., Hodgson, D.J., Al-Fulaij, N., Bailey, S., Langton, S. & Mcdonald, R.A. (2017). Voluntary recording scheme reveals ongoing decline in the United Kingdom hazel dormouse Muscardinus avellanarius population. Mamm. Rev. 47, 183–197.
- Goodwin, C.E.D., Suggitt, A.J., Bennie, J., Silk, M.J., Duffy, J.P., Al-Fulaij, N., Bailey, S., Hodgson, D.J. & McDonald, R.A. (2018). Climate, landscape, habitat, and woodland management associations with hazel dormouse Muscardinus avellanarius population status. Mamm. Rev. 48, 209–223.
- Griffith, A.B., Salguero-Gómez, R., Merow, C. & Mcmahon, S. (2016). Demography beyond the population. J. Ecol. 104, 271–280.
- Grueber, C.E., Nakagawa, S., Laws, R.J. & Jamieson, I.G. (2011). Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711.
- Harris, W.E., Combe, F.J. & Bird, S. (2015). Using integrated population modelling in conservation monitoring: a case study in the common dormouse (Muscardinus avellanarius). Folia Zool. 64, 330–336.
- Harrison, X.A., Donaldson, L., Correa-Cano, M.E., Evans, J., Fisher, D.N., Goodwin, C.E.D., Robinson, B.S., Hodgson, D.J. & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794.
- Hastings, A. (2010). Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480.
- Henderson, P.A. & Magurran, A.E. (2014). Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community. Proc. R. Soc. B Biol. Sci. 281, 20141336.
- Hixon, M.A. & Johnson, D.W. (2009). Density dependence and independence. In Encyclopedia of life sciences (ELS). Chichester: John Wiley & Sons, Ltd.
10.1002/9780470015902.a0021219 Google Scholar
- Humphries, M.M., Thomas, D.W. & Kramer, D.L. (2003). The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol. Biochem. Zool. 76, 165–179.
- Inouye, D.W., Barr, B., Armitage, K.B. & Inouye, B.D. (2000). Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl. Acad. Sci. USA 97, 1630–1633.
- Johnston, A.N., Christophersen, R.G., Beever, E.A. & Ransom, J.I. (2021). Freezing in a warming climate: marked declines of a subnivean hibernator after a snow drought. Ecol. Evol. 11, 1264–1279.
- Juškaitis, R. (1997). Ranging and movement of the common dormouse Muscardinus avellanarius in Lithuania. Acta Theriol. (Warsz) 42, 113–122.
- Juškaitis, R. (1999). Winter mortality of the common dormouse (Muscardinus avellanarius) in Lithuania. Folia Zool. 48, 11–16.
- Juškaitis, R. (2005). Daily torpor in free-ranging common dormice (Muscardinus avellanarius) in Lithuania. Mamm. Biol. 70, 242–249.
- Juškaitis, R. (2008). Long-term common dormouse monitoring: effects of forest management on abundance. Biodivers. Conserv. 17, 3559–3565.
- Juškaitis, R. (2013). Summer mortality in the hazel dormouse (Muscardinus avellanarius) and its effect on population dynamics. Acta Theriol. (Warsz) 59, 311–316.
10.1007/s13364-013-0156-7 Google Scholar
- Juškaitis, R. (2014). The common dormouse Muscardinus avellanarius: ecology, population structure and dynamics. 2nd edn. Vilnius: Institute of Ecology of Vilnius University Publishers.
- Juškaitis, R. (2020). Hazel dormice (Muscardinus avellanarius) in a regenerating clearing: the effects of clear-felling and regrowth thinning on long-term abundance dynamics. Eur. J. Wildl. Res 66, 1–8.
- Keith, D., Akçakaya, H.R., Butchart, S.H.M., Collen, B., Dulvy, N.K., Holmes, E.E., Hutchings, J.A., Keinath, D., Schwartz, M.K., Shelton, A.O. & Waples, R.S. (2015). Temporal correlations in population trends: conservation implications from time-series analysis of diverse animal taxa. Biol. Conserv. 192, 247–257.
- Kellner, K. (2019). jagsUI: a wrapper around ‘rjags’ to streamline ‘JAGS’ analyses. R package version 1.5.1.
- Kéry, M. & Schaub, M. (2012). Bayesian Population Analysis using WinBUGS. Bayesian Popul. Anal. using WinBUGS 463–477.
- Koppmann-Rumpf, B., Heberer, C. & Schmidt, K.H. (2003). Long term study of the reaction of the edible dormouse Glis glis (rodentia: Gliridae) to climatic changes and its interactions with hole-breeding passerines. Acta Zool. Acad. Sci. Hungaricae 49, 69–76.
- Krebs, C.J. (2002). Two complementary paradigms for analysing population dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1211–1219.
- Lebl, K., Bieber, C., Adamík, P., Fietz, J., Morris, P., Pilastro, A. & Ruf, T. (2011). Survival rates in a small hibernator, the edible dormouse: a comparison across Europe. Ecography (Cop.) 34, 683–692.
- Lebreton, J.D., Burnham, K.P., Clobert, J. & Anderson, D.R. (1992). Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118.
- Leirs, H., Stenseth, N.C., Nichols, J.D., Hines, J.E., Verhagen, R. & Verheyen, W. (1997). Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389, 176–180.
- Lindenmayer, D.B., Franklin, J.F. & Fischer, J. (2006). General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445.
- Liow, L.H., Fortelius, M., Lintulaakso, K., Mannila, H. & Stenseth, N.C. (2009). Lower extinction risk in sleep-or-Hide mammals. Am. Nat. 173, 264–272.
- Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J. & Guisan, A. (2010). Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biol. Conserv. 143, 2647–2657.
- Loreau, M. & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115.
- Mackey, B.G. & Lindenmayer, D.B. (2001). Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28, 1147–1166.
- Magurran, A.E., Baillie, S.R., Buckland, S.T., Dick, J.M.P., Elston, D.A., Scott, E.M., Smith, R.I., Somerfield, P.J. & Watt, A.D. (2010). Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582.
- Manning, J.A., Medill, S.A. & Mcloughlin, P.D. (2015). Climate fluctuations interact with local demography and resources to predict spatially dynamic adult sex ratios in a megaherbivore. Oikos 124, 1132–1141.
- McLaughlin, J.F., Hellmann, J.J., Boggs, C.L. & Ehrlich, P.R. (2002). Climate change hastens population extinctions. Proc. Natl. Acad. Sci. USA 99, 6070–6074.
- Melbourne, B.A. & Hastings, A. (2008). Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–103.
- Miller, T.E.X. (2007). Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants. J. Anim. Ecol. 76, 722–729.
- Morris, D.W. & Maceachern, J.T. (2010). Active density-dependent habitat selection in a controlled population of small mammals. Ecology 91, 3131–3137.
- Narasimhan, R. (2014). weatherData: get weather data from the Web. R package version 0.4.1.
- Nowack, J., Stawski, C. & Geiser, F. (2017). More functions of torpor and their roles in a changing world. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 187, 889–897.
- Nowicki, P., Bonelli, S., Barbero, F. & Balletto, E. (2009). Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics. Oecologia 161, 227–239.
- Ohlberger, J., Rogers, L.A. & Stenseth, N.C. (2014). Stochasticity and determinism: how density-independent and density-dependent processes affect population variability. PLoS One 9, 6.
- Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.
- Payo-Payo, A., Genovart, M., Bertolero, A., Pradel, R. & Oro, D. (2016). Consecutive cohort effects driven by density-dependence and climate influence early-life survival in a long-lived bird. Proc. R. Soc. B Biol. Sci. 283, 20153042.
- Plummer, M. (2003). JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proc. 3rd Int. Work. Distrib. Stat. Comput. (DSC 2003) 20–22.
- Pretzlaff, I. & Dausmann, K. (2012). Impact of climatic variation on the hibernation physiology of Muscardinus avellanarius. In Living a Seas. World: 85–97. Berlin, Heidelberg: Springer.
10.1007/978-3-642-28678-0_8 Google Scholar
- Pretzlaff, I., Radchuk, V., Turner, J.M. & Dausmann, K.H. (2021). Flexibility in thermal physiology and behaviour allows body mass maintenance in hibernating hazel dormice. J. Zool. 314, 1–11.
- Pretzlaff, I., Rau, D. & Dausmann, K. (2014). Energy expenditure increases during the active season in the small, free-living hibernator Muscardinus avellanarius. Mamm. Biol. 79, 208–214.
- R Core Team. (2021). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
- Richard, E., Simpson, S.E., Medill, S.A. & Mcloughlin, P.D. (2014). Interacting effects of age, density, and weather on survival and current reproduction for a large mammal. Ecol. Evol. 4, 3851–3860.
- Schaub, M. & Abadi, F. (2011). Integrated population models: a novel analysis framework for deeper insights into population dynamics. J. Ornithol. 152, 227–237.
- Schaub, M. & Fletcher, D. (2015). Estimating immigration using a Bayesian integrated population model: choice of parametrization and priors. Environ. Ecol. Stat. 22, 535–549.
- Schaub, M. & Vaterlaus-Schlegel, C. (2001). Annual and seasonal variation of survival rates in the garden dormouse (Eliomys quercinus). J. Zool. 255, 89–96.
- Seebacher, F. (2009). Responses to temperature variation: integration of thermoregulation and metabolism in vertebrates. J. Exp. Biol. 212, 2885–2891.
- Slade, N.A. (1977). Statistical detection of density dependence from a series of sequential censuses. Ecology 58, 1094–1102.
- Sozio, G., Iannarilli, F., Melcore, I., Boschetti, M., Fipaldini, D., Luciani, M., Roviani, D., Schiavano, A. & Mortelliti, A. (2016). Forest management affects individual and population parameters of the hazel dormouse Muscardinus avellanarius. Mamm. Biol. 81, 96–103.
- Trout, R.C., Brooks, S., Combe, F.J. & Rudlin, P. (2018). The different effects of periodic experimental tree removal patterns on the population demography of the hazel dormice (Muscardinus avellanarius) in a conifer plantation. Folia Zool. 67, 110–119.
- Turbill, C., Bieber, C. & Ruf, T. (2011). Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. B Biol. Sci. 278, 3355–3363.
- Turbill, C. & Prior, S. (2016). Thermal climate-linked variation in annual survival rate of hibernating rodents: shorter winter dormancy and lower survival in warmer climates. Funct. Ecol. 30, 1366–1372.
- Turchin, P. (2003). Complex population dynamics: a theoretical/empirical synthesis. Monogr. Popul. Biol. Princeton: Princeton University Press.
- Vasseur, D.A. & Fox, J.W. (2007). Environmental fluctuations can stabilize food web dynamics by increasing synchrony. Ecol. Lett. 10, 1066–1074.
- Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O. & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416, 389–395.
- White, I. (2012). the national dormouse monitoring programme in Britain. Peckiana 8, 103–107.
- Wilson, R.J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R. & Monserrat, V.J. (2005). Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146.
- Zipkin, E.F. & Saunders, S.P. (2018). Synthesizing multiple data types for biological conservation using integrated population models. Biol. Conserv. 217, 240–250.